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ABSTRACT
Reducing power consumption has become one of the primary
challenges in chip design, and therefore significant efforts are be-
ing devoted to find holistic solutions on power reduction from
the device level up to the system level. Among a plethora of
low power devices that are being explored, single-electron tran-
sistors (SETs) at room temperature are particularly attractive.
Although prior work has proposed a binary decision diagram-
based reconfigurable logic architecture using SETs, it lacks an
automated synthesis tool for the device. Consequently, in this
work, we develop a product-term-based approach that synthe-
sizes a logic circuit by mapping all its product terms into the
SET architecture. The experimental results show the effective-
ness and efficiency of the proposed approach on a set of MCNC
benchmarks.

Categories and Subject Descriptors
B.6.3 [Logic Design]: Design Aids—Automatic synthesis

General Terms
Algorithms

Keywords
Automatic synthesis, binary decision diagram, single-electron tran-
sistor

1. INTRODUCTION
As technology scaling enables packing of billion transistors into

a single chip, power consumption becomes one of the primary
bottlenecks of continuously meeting Moore’s law. At the system
level, there has been a paradigm shift from frequency scaling
of a monolithic processor to multiple slower computing nodes
that communicate through a common network fabric [6] [12]. A
tight power budget constraint is one of the primary reasons that
causes this paradigm shift. Moreover, leakage power is becoming
a dominant source of power consumption and several works have
looked into mitigating this power wastage [5] [7].
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Figure 1: A hexagonal fabric. (a) Node devices. (b) An
example of a 2-bit XOR.

On the device level, as the power-delay product reaches quan-
tum limits, a plethora of new device concepts are being explored
to exploit tunneling in semiconductor layers as the operation ba-
sis. These novel device structures use significantly low-drive cur-
rent of the order of a few electrons. Numerous demonstrations
of the room temperature operation of Single-Electron Transistors
(SETs) have proved that these devices are very attractive as a
possible way for extending Moore’s law.

Majority of these ultra-low power emerging nanodevices suf-
fer from low transconductance and degraded output resistance,
making it essential to co-explore an emerging device design in
conjunction with a non-CMOS logic architecture. To this end,
a novel binary decision diagram (BDD)-based [1] logic architec-
ture was proposed as a suitable candidate for implementing logic
using ultra-low power nanodevices [4]. Then, the BDD of a com-
binational circuit is mapped onto a hexagonal nanowire network
controlled by Schottky wrap gates [3].

In the hexagonal network, a logic function is achieved by a
passive path switching of messenger electrons that arrive at the
root node through either the left arm (“0”) or right arm (“1”)
depending on the control gate of the wrap gates. Each row of
the hexagonal fabric is controlled by a single variable. Both the
normal and the complement of the variable are supplied to a node
of the BDD and are used to control the left and right edges as
shown in Fig. 1(a).

A BDD implementation can be mapped onto this fabric and
the variables implementing the given function establish a path
in this fabric from the root node to either a 1 terminal or a 0
terminal to realize the desired functionality. Fig. 1(b) shows
an example of a 2-bit XOR. There is a current detector at the
root associated to every output bit that measures the current (if
any). Depending on the operating modes, active high or active
low, the current flowing is interpreted as a logic one or a zero (In
the active high mode, no current is a logic zero and presence of
current is a logic one and vice-versa in the active low mode).

However, the realization of the BDD architecture in [4] is fixed
and not amenable to functional reconfiguration. This is because
the approach selectively etches all paths that do not lead to a 1
terminal and also customizes the edges of a hexagon to either be
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Figure 2: (a) A SET array fabric. (b) An example of a
xor b.

a conducting nanowire or have a wrapped gate. Consequently,
this structure is not very regular and cannot be restructured to
implement a different function due to the physical etching process
involved in its realization. Furthermore, if any of the nanowire
segments or the wrap gates is defective, the whole circuit be-
comes non-functional. This is a significant limitation considering
that nanowires and few electron nanodevices have traditionally
suffered from the variability and reliability issues.

To solve the problem, a reconfigurable version of SET using
wrap gate tunable tunnel barriers was proposed [2] and the in-
depth device simulation to study the electrostatic properties was
presented [8]. This device can operate in three distinct operation
states: a) active b) open and c) short state based on the wrap gate
bias voltages. Such programmability leads to immense flexibility
in designing a circuit. The device simulation shows that this
device can provide an order of magnitude lower energy-delay than
CMOS device [8].

However, the synthesis of a BDD using the device in [2] is man-
ual rather than automated. The reason is that mapping a reduced
ordered BDD (ROBDD) into a planar SET array could be very
complicated, especially when the BDD has crossing edges, which
is typical in minimized BDDs. In this work, we address this
mapping problem and propose an automated mapping approach.
Instead of mapping a BDD directly, the proposed approach first
divides a BDD into a set of product terms that represent the
paths leading to the 1 terminal in the BDD. Then, it sequentially
maps these product terms. Since the mapping order of the prod-
uct terms affects the mapping results, we propose four sorting
heuristics to reduce area cost. Additionally, the automated map-
ping approach incorporates the granularity and fabric constraints
that are imposed in order to decrease the number of metal wires
used for programming the SET array and for supplying the input
signals, respectively [2].

We conduct experiments on a set of MCNC benchmarks [10].
The experimental results show that the proposed approach can
complete mapping within 1 second for most of the benchmarks.
The main contribution of this work is proposing an automated
synthesis tool for the promising energy-efficient SET array archi-
tecture.

The rest of this paper is organized as follows: Section 2 uses
an example to demonstrate the problem considered in this paper,
and introduces some notations. Section 3 presents the proposed
mapping approach. Section 4 discusses and addresses two map-
ping constraints. Finally, the experimental results and conclusion
are presented in Sections 5 and 6.

2. BACKGROUND

2.1 An example
A SET array can be presented as a graph composed of hexagons.

As shown in Fig. 2(a), like the hexagonal fabric mentioned above,
there is a current detector at the top that measures the current
coming from the bottom of the hexagonal fabric. All the vertical
edges of the hexagons are electrical short. All the sloping edges
can be configured as active high, active low, short or open. An
active high edge is controlled by a variable x. It is conducting
and non-conducting when x = 1 and x = 0, respectively. Con-
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Figure 3: An abstract diamond fabric.

versely, an active low edge is an electrical opposite of an active
high edge and it is controlled by a variable x′.

A Boolean function can be implemented using a SET array.
All the active edges at the same row of the hexagonal fabric are
controlled by a single variable, i.e., a primary input (PI). They
determine whether there exists a path for the current to pass
through, and thus, be detected at the top. If so, the functional
output of the array is 1; otherwise, it is 0. For example, Fig.
2(b) shows a SET array implementing a xor b. When a = 1
and b = 0, the current can be detected by passing through the
left path. However, if a = 1 and b = 1, the current cannot be
detected.

Thus, the addressed problem of this work is synthesizing a given
Boolean function into a SET array with minimized area, i.e., the
number of configured hexagons.

Previous work [2] tries to manually map a Boolean function
by directly mapping its BDD into a SET array. However, the
mapping process could be very complicated due to the structural
difference of a BDD and a SET array. For example, an ROBDD
usually has some crossing edges. Since a SET array is a planar
architecture, much effort is required to avoid having the crossing
edges in the ROBDD when mapping it into a SET array. Node
duplication could be a trivial method for solving this crossing
edge issue while not considering the area overhead. In addition,
determining the exact location of each ROBDD node in a SET
array is a challenge. Thus, to address this problem, we propose
a product term-based method. It first collects all the paths that
lead to the terminal 1 in the ROBDD, i.e., product terms. Then,
it maps each product term into a path in the SET array. The
proposed method simultaneously avoids the crossing edge and the
BDD node mapping issues.

For example, the product terms of a xor b are 10 and 01. Using
the proposed method, we first map 10 and then 01. Finally, we
obtain the resultant SET array as shown in Fig. 2(b), where the
left path is configured for 10 and the right path is for 01.

2.2 Notations
For ease of discussion, we use an abstract graph to present a

SET array. Compared to Fig. 2(a), only the configurable edges
are preserved as shown in Fig. 3. In this diamond fabric, each
node n, i.e., the root of a pair of left and right edges, has a unique
location (x, y). Based on the root node located at (0, 0), which
is below the current detector, the y value increases from top to
bottom. The x value increases and decreases from center to right
and left, respectively.

For simplification, let n.left and n.right denote the status of the
left and right edges of a node n, respectively. The status could
be empty, high, low, short, or open. empty indicates the edge is
not configured yet (is used primarily for algorithm illustration).
high, low, short, and open indicate the edge is configured as active
high, active low, short, and open, respectively. Additionally, let
n(x,y) denote the node located at (x, y).

3. AUTOMATED MAPPING
In this section, we first discuss the motivation of our method.

Next, we introduce two key mapping procedures. Finally, the
overall flow is presented. Here, we first assume that each edge
can be configured independently without any constraint. In the
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Figure 4: Four different sorting results. (a) Original.
(b) LexSort. (c) InertiaSort. (d) ForInertiaSort. (e)
BackForInertiaSort.

next section, we will extend our mapping method considering the
granularity and fabric constraints.

To simplify the mapping problem, we divide a ROBDD into a
set of paths that lead to the terminal 1 in this ROBDD. These
paths represent the product terms. Then we map these prod-
uct terms instead of a whole ROBDD. The overall mapping flow
includes two important steps: product term computation and
product term mapping.

3.1 Product term computation
To compute the product terms of a given Boolean function,

we first build its ROBDD. Next, we compute the product terms
by traversing the ROBDD to collect the paths that lead to the
terminal 1. In this work, we use the CUDD package [9] to build
ROBDDs and collect the product terms.

Since we map the product terms one by one and each product
term corresponds to a path in the SET array, both the num-
ber and the order of product terms we consider could affect the
mapping results. In general, more product terms result in a
larger area. Thus, before collecting product terms, we will try
to minimize the ROBDD by performing BDD reordering. How-
ever, because the BDD reordering operation is used to minimize
the number of BDD nodes instead of product terms, we only
adopt the reordering result when the number of product terms
is reduced. In this work, we use the BDD reordering heuris-
tic CUDD REORDER SYMM SIFT in the CUDD package as it
achieves better reduction for most benchmarks compared to the
other heuristics provided by the CUDD package.

Note that although there are other methods, like Espresso [11],
which could compute more concise product terms, we choose to
use the BDD-based computation method. This is because it en-
sures that each minterm appears in only one product term. As a
result, when we map each product term into a path in the SET
array, exactly one path is conducting at a time. Having multiple
conducting paths leads to a higher fanout number that is not
preferred for SET devices that have a low-drive strength.

As for sorting the product terms, we propose four different
sorting methods: LexSort, InertiaSort, ForInertiaSort, and Back-
ForInertiaSort. Our objective is to make the configured paths of
different product terms share as many edges as possible. The
details of the proposed sorting methods are as follows:

3.1.1 LexSort
We sort product terms by comparing the bit values from the

first bit with the relationship: − > 1 > 0. For example, Fig.
4(b) shows the sorting result of the product terms in Fig. 4(a).
Using LexSort, two product terms that have continuous bit value
matches from the first bit will be adjacent. As a result, starting
from the root node, the adjacent product terms could possibly
share the edges for the continuous matching bits.

3.1.2 InertiaSort
Each product term has an inertia value that is the number of bit

value matches with all the other product terms. We sort product
terms from large to small by the inertia values. Fig. 4(c) shows
the sorting result. The inertia value of the first product term in
Fig. 4(c) is 1 + 2 + 0 + 2 + 2 = 7. The inertia values of the other
product terms are 7, 6, and 4, respectively. Using InertiaSort, the
product terms that have more bit value matches with others will
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Figure 5: A mapping example. (a) Product terms. (b)
The mapping result of p0. (c) The mapping result of
p0 + p1. (d) The mapping result of p0 + p1 + p2. (e) The
mapping result of p0 + p1 + p2 + p3. (f) The final mapping
result.

be mapped earlier than those having fewer bit value matches.
After a product term having a larger inertia value is mapped,
more product terms could possibly reuse its configured edges due
to the higher bit value matches.

3.1.3 ForInertiaSort
Unlike the inertia value, a product term’s forward inertia value

is the number of continuous bit value matches from the first bit
with all the other product terms. We sort product terms from
large to small by the forward inertia values. Fig. 4(d) shows
the sorting result. The forward inertia value of the first product
term in Fig. 4(d) is 1 + 1 = 2. This is because only the second
product term has two continuous bit value matches with it. The
forward inertia values of the other product terms are 2, 1, and 1,
respectively. Using ForInertiaSort, the product terms that have
more continuous bit value matches from the first bit with others
will be mapped earlier. The reason behind this heuristic is that
we expect many shared edges to start from the root nodes and
to be connected (continuous bits).

3.1.4 BackForInertiaSort
Conversely, a product term’s backward inertia value is the

number of continuous bit value matches from the last bit to the
first bit with all the other product terms. We first sort product
terms from small to large by the backward inertia values. Then,
we sort them again from large to small by the forward inertia
values. The sorting result is shown in Fig. 4(e). Unlike the
result in Fig. 4(d), the third product term has a smaller back-
ward inertia value. BackForInertiaSort is used to complement
ForInertiaSort. We use the backward inertia values to distin-
guish the product terms having the same forward inertia values,
and expect they could share edges near the leaf nodes.

3.2 Product term mapping
After computing product terms, we start to map these prod-

uct terms. Our objective is to configure a path in the SET array
for each product term, and avoid constructing a path that corre-
sponds to an invalid product term.

Given a product term p, we start from the root node, and find
or configure an edge for each bit in p from the first bit to the last
bit. The mapping rules are as follows: When the bit value under
consideration is 1 (or 0), we find an active high (or low) edge for
it if applicable; otherwise, we configure an edge as active high (or
low) for it. However, if the bit value is −, we find a short edge
if applicable or configure an edge as short for it. After all the
product terms are mapped, we finally configure the edges that
are not configured yet as open.

We use an example in Fig. 5 to demonstrate the mapping
approach. There are four product terms, p0 = 0110, p1 = 010−,
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Figure 6: Incorrect mapping examples.

p2 = 111−, and p3 = 101−, sorted by ForInertiaSort as shown in
Fig. 5(a). First, let us consider p0. Starting from the root node
n(0,0), we first configure n(0,0).left as low for the first bit 0. Next,
we configure n(−1,1).right as high for the second bit 1. Using the
same method, we configure n(0,2).left and n(−1,3).right as high
and low for the last two bits 10, respectively. The mapping result
is shown in Fig. 5(b). Here, the decision of configuring the left
edge or the right edge of a node depends on its location (x, y). If
x < 0, we first try to configure its right edge. If inapplicable, we
then try to configure its left edge. Conversely, if x ≥ 0, we try
the left edge first and then the right edge.

Next, for p1, because the first two bits are the same as that
of the first product term, we partially reuse this mapping result.
Then, we configure n(0,2).right as low and n(1,3).left as short for
the last two bits 0−, respectively. The mapping result is shown
in Fig. 5(c).

For p2, after we configure n(0,0).right as high for the first bit 1,
we do not configure n(1,1).left as high for the second bit 1. This
is because if we do so, there will exist a path n(0,0) → n(1,1) →
n(0,2) → n(1,3) → n(0,4), which corresponds to an invalid product
term 110−. Thus, we configure n(1,1).right as high for the second
bit 1. Finally, n(2,2).left and n(1,3).left are configured as high and
short for the last two bits 1−, respectively. The mapping result
is shown in Fig. 5(d).

Next, let us consider p3. After finding n(0,0).right = high for
the first bit 1, we do not configure n(1,1).left as low for the sec-
ond bit 0. This is because it will construct a path for an invalid
product term 100−. Additionally, since n(1,1).right has been con-
figured as high, we expand the structure by configuring both
n(2,0).left and n(2,0).right as short, and start from n(3,1) for the
last three bits. The mapping result is shown in Fig. 5(e). Finally,
we configure all the non-configured edges as open, and obtain the
final mapping result in Fig. 5(f).

To avoid creating an invalid path, we need to prevent two paths
from merging and then branching during mapping. Thus, when
we detect a merging node, like n(0,2) for p2 or p3, we will check
if there exists only one path from n(0,2). If not, there possibly
exists an invalid path. Thus, we prevent the paths from merging.
With this checking rule, each path from top to bottom exactly
corresponds to one product term. In addition, from the viewpoint
of conducting paths, this checking rule is not enough and we have
to add another rule considering the conducting path issue. Fig.
6(a), (b) show two mapping examples, which are incorrect while
satisfying the merging and branching rule.

In Fig. 6(a), when the input pattern is 11101, which is not a
minterm, the current can be detected at the top. This is because
the right edge of n(−1,3), the left edge of n(1,3), and the right
edge of n(1,3) as highlighted are conducting simultaneously. This
partial conducting path forms like a bridge that connects two
paths such that the current can pass through the path n(1,5) →
n(2,4) → n(1,3) → n(0,4) → n(−1,3) → n(0,2) → n(−1,1) →n(0,0).
In addition, a partial conducting path could be composed of the

Mapping(set PTs) // PTs: product terms
1. Configure n(0,0).left and n(0,0).right based on the first bit values

of the product terms in PTs;
2. For each product term t in PTs

2.1. If (LeftConfigure(t, 0, 0)), continue;
2.2. If (RightConfigure(t, 0, 0)), continue;
2.3. Expand(t);

3. Configure all the edges that are not configured yet as open;
bool LeftConfigure(productterm t, int x, int y)

1. If n(x,y).left is inconsistent to the yth bit in t, return 0;
2. If n(x−1,y+1) is a merging node and there is more than one path

from n(x−1,y+1), return 0;
3. If the configuration of n(x,y).left will make the left edge of n(x,y)

and the right edge of n(x−2,y) could be conducting simultane-
ously, return 0;

4. If n(x,y).left is empty, configure it based on the mapping rules;

5. If (x− 1 < 0)
5.1. If (RightConfigure(t, x− 1, y + 1)), return 1;
5.2. If (LeftConfigure(t, x− 1, y + 1)), return 1;

6. If (x− 1 ≥ 0)
6.1. If (LeftConfigure(t, x− 1, y + 1)), return 1;
6.2. If (RightConfigure(t, x− 1, y + 1)), return 1;

7. Undo n(x,y).left if necessary, and return 0;

bool RightConfigure(productterm t, int x, int y)

1. If n(x,y).right is inconsistent to the yth bit in t, return 0;
2. If n(x+1,y+1) is a merging node and there is more than one path

from n(x+1,y+1), return 0;
3. If the configuration of n(x,y).right will make the right edge of

n(x,y) and the left edge of n(x+2,y) could be conducting simul-
taneously, return 0;

4. If n(x,y).right is empty, configure it based on the mapping rules;

5. If (x− 1 < 0)
5.1. If (RightConfigure(t, x + 1, y + 1)), return 1;
5.2. If (LeftConfigure(t, x + 1, y + 1)), return 1;

6. If (x− 1 ≥ 0)
6.1. If (LeftConfigure(t, x + 1, y + 1)), return 1;
6.2. If (RightConfigure(t, x + 1, y + 1)), return 1;

7. Undo n(x,y).right if necessary, and return 0;

bool Expand(productterm t)
1. Determine the expansion direction (left or right) based on the

first bit in t.
2. If the expansion direction is left, x = −2; otherwise, x = 2;
3. While(1)

3.1. Configure n(x,0).left and n(x,0).right as short if they are
empty;

3.2. If (x− 1 < 0)
3.2.1 If (RightConfigure(t, x− 1, 1)), return 1;
3.2.2 If (LeftConfigure(t, x− 1, 1)), return 1;
3.2.3 x = x− 2;

3.3. If (x− 1 ≥ 0)
3.3.1 If (LeftConfigure(t, x + 1, 1)), return 1;
3.3.2 If (RightConfigure(t, x + 1, 1)), return 1;
3.3.3 x = x + 2;

Figure 7: The algorithm of product term mapping.

edges at the different rows. For example, Fig. 6(b) shows a par-
tial conducting path that crosses two rows as highlighted. This
path, n(3,3) → n(2,2) → n(1,3) → n(0,4) → n(−1,3), constructs an
invalid conducting path for the input pattern 11111.

A necessary condition for causing a partial conducting path is
that there exist two pairs of two adjacent conducting edges: one
pair is two lower edges of a diamond that could be conducting si-
multaneously, and the other pair is two upper edges of a diamond
that could be conducting simultaneously. For example, in Fig.
6(a), the right edge of n(−1,3) and the left edge of n(1,3) are the
former, and the left and right edges of n(1,3) are the latter. One
simple method for avoiding partial conducting paths is to ensure
that one of the mentioned two pairs of two adjacent conducting
edges is never constructed. Thus, if a configuration results in a
merging node, we check if the two edges connecting to the merg-
ing node could be conducting simultaneously. If so, we avoid this
configuration. With this method, we can prevent two lower edges
of a diamond from conducting simultaneously. Fig. 6(c) and Fig.
6(d) show the correct mapping results for the product terms in
Fig. 6(a) and Fig. 6(b), respectively.

Additionally, because the root node has only two edges (left
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Figure 8: The overall mapping flow.

and right), in order to successfully map all product terms, three
kinds of bit values, 0, 1, and −, cannot simultaneously appear
as the first bits of different product terms. If they appear simul-
taneously, we divide each product term having − in the first bit
into two product terms before mapping: one begins with 0 and
the other begins with 1. Furthermore, if there are two different
kinds of bit values appearing in the first bits of all product terms,
we will initially configure n(0,0).left and n(0,0).right based on the
first bit values to ensure n(0,0).left 6= n(0,0).right for successfully
mapping all product terms.

Fig. 7 shows the proposed recursive algorithm of product term
mapping. In the main function, Mapping(), we first config-
ure n(0,0).left and n(0,0).right based on the first bit values of all
the product terms to ensure n(0,0).left 6= n(0,0).right, when there
are two different first bit values. Next, we start to configure all
the product terms from the root node n(0,0). For each product
term t, we use a DFS-like method to construct a path for it.
LeftConfigure() and RightConfigure() configure the left and
right edges of a node, respectively. If we cannot successfully map
t from n(0,0), we expand the structure by using Expand(). Fi-
nally, we configure all the edges that are not configured yet as
open.

In LeftConfigure(), we first check if the left edge of a node
n(x,y) is inconsistent to the yth bit in t. They are inconsistent
when n(x,y).left is configured and they do not satisfy the map-
ping rules: high for 1, low for 0, and short for −. If so, we
return to the last procedure to consider the other edges or nodes.
If they are consistent, we then check whether the situation that
two paths merge and then branch occurs. Here, n(x−1,y+1) is the
sink node of the left edge of n(x,y). If n(x−1,y+1) is a merging
node and there is more than one path from it, there exists two
merging and branching paths. If not, we further check if the
configuration of n(x,y).left will make the left edge of n(x,y) and
the right edge of n(x−2,y) could be conducting simultaneously.
If not, we then configure n(x,y).left based on the mapping rules
if n(x,y).left is empty. Next, we perform LeftConfigure() or
RightConfigure() on n(x−1,y+1) for the next bit based on the
value of x. However, if we finally fail to map t due to the configu-
ration of n(x,y).left, we undo it and then consider the other edges
or nodes. RightConfigure() is similar to LeftConfigure(),
but considers the configuration of a right edge.

In Expand(), we first determine the expansion direction. For
example, suppose n(x,y).left is high. If the first bit of t is 1, the
expansion direction is left; otherwise, it is right. The direction
also determines the initial value of x. x is −2 when the direction
is left; otherwise, it is 2. Next, we start to construct a path using
the same method for the second bit to the last bit in t. First,
we configure n(x,0).left and n(x,0).right as short. Second, we
determine the new root node for this configuration. It is n(x−1,1)

if the direction is left; otherwise, it is n(x+1,1). However, if we still
fail to map t, we expand the structure again and x is increased
or decreased by 2 based on the expansion direction.
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Figure 9: The mapping results with (a) granularity con-
straint, and (b) fabric constraint.

3.3 Overall mapping flow
Fig. 8 shows the overall mapping flow. The input is a Boolean

function (f). In step 1, we first construct an ROBDD (dd) of f
by using the CUDD package. Then, we reorder dd by using the
heuristic CUDD REORDER SYMM SIFT in cudd. In step 2, we
first compute all the product terms (PTs) of f by traversing dd.
Next, we preprocess PTs to prevent 0, 1, and − from appearing
as the first bits simultaneously. Finally, we sort PTs by using
the proposed heuristic. In step 3, we map PTs into a SET array
by using the proposed mapping algorithm. Finally, we get a
configured SET array.

4. MAPPING CONSTRAINTS
In this section, we discuss two mapping constraints, granularity

and fabric constraints, which limit the status combinations of a
pair of left and right edges of a node.

4.1 Configuration granularity constraint
The configuration circuitry, which involves metal wires, is used

to program the SET into open, short or active mode. As the
metal wire pitches are larger than nano-wire pitches, the circuit
density would be determined by the number of metal wires. Lim-
iting the number of metal wires can lead to higher circuit density
at a loss of flexibility. Thus, the granularity constraint, where the
same configuration circuitry is used to program multiple SETs
simultaneously, was introduced by [2]. Consequently, the com-
bination of n.left and n.right, (n.left, n.right), must be one of
(high, low), (low, high) (i.e. active, active), (short, short), and
(open, open), where n is a node in the SET array.

According to the constraint, when one edge of the root node is
configured as short, the other edge must be short as well. Thus,
before mapping, we divide each product term whose first bit is −
into two product terms: one has the first bit 0 and the other has
the first bit 1, unless the first bits of all the product terms are −.

The algorithm in Fig. 7 maps product terms without any con-
straint. It can be easily extended to consider the granularity
constraint by modifying the configuration method. Originally,
two edges of a node are configured separately. To consider this
granularity constraint, we configure them at the same time. For
example, when we configure one edge of a node as high (or low),
we also configure the other edge as low (or high). Similarly, when
one edge is short, the other edge is short as well.

Fig. 9(a) shows the mapping result for the same set of product
terms in Fig. 5(a) with the granularity constraint. Here, not all
paths are connected to the current source. This is because we
configure two edges of a node for each bit at a time. When we
finish mapping the last bit of a product term, there are two paths
are constructed simultaneously. Thus, we only connect the path
with respect to the product term to the current source.

Since two edges are configured simultaneously, we check if
merging and branching paths occur for both of these two edge
configurations to avoid creating invalid paths. Additionally, we
also prevent two lower edges of a diamond from conducting si-
multaneously to avoid creating partial conducting paths. For
brevity, we omit the detailed mapping algorithm considering the
granularity constraint.
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Table 1: The experimental results of using differ-
ent product term sorting heuristics and mapping con-
straints.

Bench. PI PO PT
Constraint-free Granu. Fabric

Lex Inert. FInert. BFInert. FInert. FInert.
C17 5 2 8 *18 *18 20 20 58 66

cm138a 6 8 48 *116 158 120 120 360 438
x2 10 7 33 *149 152 153 154 725 790

cm85a 11 3 49 219 197 197 *195 608 528
cm151a 12 2 25 406 427 *400 *400 885 1045
cm162a 14 5 37 292 336 294 *287 1077 1163

cu 14 11 24 240 242 *238 *238 609 662
cmb 16 4 26 195 216 *170 *170 710 855

cm163a 16 5 27 275 *257 260 260 907 1029
pm1 16 13 41 337 342 *335 *335 1186 1239
pcle 19 9 45 *291 292 293 293 1553 1775
sct 19 15 142 1890 *1661 1725 1741 4665 5186
cc 21 20 57 618 658 *585 603 2214 2306
i1 25 16 38 632 650 *627 *627 1773 1920
lal 26 19 160 1968 2157 1832 *1799 7838 8684

pcler8 27 17 68 *737 850 *737 *737 3160 3435
frg1 28 3 399 5993 *5602 5612 5612 11029 13731

c8 28 18 94 *836 884 881 894 4663 4869
term1 34 10 1246 23494 25297 *22426 23856 70844 80293
count 35 16 184 1936 1861 *1336 1465 13509 14678
unreg 36 16 64 1288 *1259 1280 1280 4518 4632

b9 41 21 352 *6333 8650 6478 6542 24272 22089
cht 47 36 92 *2380 2390 *2380 *2380 7857 7934

apex7 49 37 1440 36252 44001 *35999 36317 123003 135543
example2 85 66 430 9737 10164 9623 *9494 53597 50471

Total 96632 108721 94001 95819 341620 365361
Best count 8 5 11 11

4.2 Fabric constraint
In SET array implementation, the inputs to the active edges in

a row are supplied by metal wires. We need two wires to supply
both the normal and complement of an input to a row. Each
edge is connected to either x or its complement x′ wires for the
row. The pattern of connections of x and x′ in a row defines the
SET fabric and it is fixed during manufacturing.

For example, using x to control all left edges and x′ to control
the right edges results in the symmetric fabric proposed in [2].
In our mapping tool, we use the symmetric fabric constraint. In
the future, we will extend our mapping tool to accept any fabric
specification.

In such an array, both (high, low) and (low, high) cannot
simultaneously appear at the same row in a SET array. Note
that the entire row pattern of (high, low) (or (low, high)) can be
changed to (low, high) (or (high, low)) by swapping the normal
value and its complement in the control input signals for the row.

To satisfy this symmetric fabric constraint, we need to identify
which combination ((high, low) or (low, high)) appears at a
certain row. One method is to follow the first configuration result
at the row. For example, if (high, low) is first configured at a
row, we then do not configure (low, high) at this row. Another
easy method is to allow only one of (high, low) and (low, high)
to appear in a SET array. For example, for a bit value 1 or 0, we
can always configure the left edge as high and the right edge as
low, i.e., only (high, low) is allowed. For simplification, we use
the second method in this work.

Fig. 9(b) shows the mapping result for the same set of prod-
uct terms in Fig. 5(a) considering the fabric constraint. In this
example, only (high, low), (short, short), and (open, open) are
allowed.

5. EXPERIMENTAL RESULTS
We implemented the algorithm in C language. The experi-

ments were conducted on a 2.67 GHz Linux platform (Red Hat
5.5). The benchmarks are from the MCNC benchmark suite [10].
For each benchmark, we separately map the Boolean function of
each primary output (PO), and measure the total number of con-
figured hexagons and the total CPU time. In the experiments, we
compare different product term sorting heuristics and mapping
constraints.

Table 1 summarizes the experimental results. Column 1 lists
the benchmarks. Except the C17 benchmark, all the benchmarks

have the crossing edge issue in their ROBDDs. Directly mapping
each of these ROBDDs into a SET array could be very diffi-
cult. Columns 2 and 3 list the number of PIs and POs in each
benchmark, respectively. Column 4 lists the number of computed
product terms. The remaining columns list the mapping results
in terms of the number of hexagons by using different sorting
heuristics and constraints. The number marked with “*” means
that it is the best result among all sorting heuristics. Columns 5
to 8 are the constraint-free mapping results by using LexSort, In-
ertiaSort, ForInertiaSort, and BackForInertiaSort, respectively.
Columns 9 and 10 are the mapping results of applying the gran-
ularity and fabric constraints by using ForInertiaSort only. This
is because the ForInertiaSort heuristic has better results for con-
sidering all benchmarks or large benchmarks in the experiments.
We omit the results by using the other sorting heuristics due to
page limit.

According to Table 1, there is no a specific sorting heuristic
that completely outperforms the others for all the benchmarks.
By all accounts, ForInertiaSort results in the best mapping for
considering all benchmarks. Additionally, when the constraints
are considered, the number of configured hexagons increases.
This is because the number of edges shared by different paths
decreases. As for the CPU time, the proposed method can map
each benchmark within 1 second except the term1 and apex7
benchmarks that spent approximately 6 seconds.

6. CONCLUSION
In this paper, we propose a product-term-based approach that

can efficiently map a Boolean function into a SET array. It solves
the problem of automatically mapping a BDD into a SET array
that previous works suffer from. The proposed approach sim-
plifies the mapping problem by transforming a BDD into a set
of product terms, and then individually mapping these product
terms. Additionally, four product term sorting heuristics are pro-
posed to enrich the approach. The granularity and fabric con-
straints can also be handled by the proposed approach. The
experimental results show its effectiveness and efficiency of map-
ping a set of MCNC benchmarks. Our automated mapping is a
key enabler for using the promising BDD technology.
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